Tutup
News

Yang Manakah Bilangan-Bilangan Di Bawah Ini Yang Bukan Merupakan Sisi-Sisi Sebuah Segitiga Siku-Siku

×

Yang Manakah Bilangan-Bilangan Di Bawah Ini Yang Bukan Merupakan Sisi-Sisi Sebuah Segitiga Siku-Siku

Sebarkan artikel ini
Domain Java (1)
Domain Java (1)

Serangkaian bilangan bisa menggambarkan sisi-sisi sebuah segitiga siku-siku jika memenuhi syarat Teorema Pythagoras, yang menyatakan bahwa kuadrat sisi miring (hipotenusa) sama dengan jumlah kuadrat dua sisi lainnya.

Umumnya dituliskan dalam formula: c^2 = a^2 + b^2

Iklan

Dimana c adalah hipotenusa, dan a, b adalah sisi kaki segitiga.

Suatu rangkaian angka dapat dianggap sebagai sisi-sisi segitiga siku-siku jika formulanya benar setelah dimasukkan dalam formula di atas. Dalam konteks ini, kita tidak memperhatikan tentang unit pengukuran sisi segitiga tersebut, kita hanya tertarik pada urutan kemunculan angka tersebut.

Baca Juga :   Bagaimana Cara Menanamkan Sikap Rendah Hati dan Menjauhkan Diri dari Perilaku Sombong dan Takabur?

Untuk pertanyaan ini, seharusnya disertakan serangkaian bilangan untuk dianalisis apakah bisa membentuk segitiga siku-siku atau bukan. Sebagai , mari kita ambil sejumlah serangkaian angka: (3, 4, 5), (6, 8, 9), dan (8, 15, 17).

  • Untuk set (3, 4, 5), cukup memenuhi syarat Teorema Pythagoras, karena 5^2 = 3^2 + 4^2, artinya 25 = 9 + 16, yang mana sama. Jadi, (3, 4, 5) bisa menjadi sisi-sisi segitiga siku-siku.
  • Untuk set (6, 8, 9), setelah kita masukkan angkanya ke dalam formula Pythagoras, kita dapatkan 81 bukanlah sama dengan 100 (6^2 + 8^2). Oleh karena itu, (6, 8, 9) tidak bisa menjadi sisi-sisi segitiga siku-siku.
  • Untuk set (8, 15, 17), 17^2 = 15^2 + 8^2, atau 289 = 225 + 64, yang menghasilkan angka sama. Artinya, (8, 15, 17) bisa menjadi sisi-sisi segitiga siku-siku.
Baca Juga :   Zona Radiasi Merupakan Bagian Fotosfer yang Menyelimuti Inti Matahari

Dengan penjelasan di atas, kita bisa menentukan serangkaian angka mana yang bisa dan tidak bisa membentuk segitiga siku-siku berdasarkan Teorema Pythagoras. Jadi, dalam ini, set (6, 8, 9) adalah satu-satunya set yang tidak dapat membentuk segitiga siku-siku.